Efficient algorithm for two-center Coulomb and exchange integrals of electronic prolate spheroidal orbitals

نویسنده

  • Christian B. Mendl
چکیده

We present a fast algorithm to calculate Coulomb/exchange integrals of prolate spheroidal electronic orbitals, which are the exact solutions of the single-electron, two-center Schrödinger equation for diatomic molecules. Our approach employs Neumann’s expansion of the Coulomb repulsion 1/jx yj, solves the resulting integrals symbolically in closed form and subsequently performs a numeric Taylor expansion for efficiency. Thanks to the general form of the integrals, the obtained coefficients are independent of the particular wavefunctions and can thus be reused later. Key features of our algorithm include complete avoidance of numeric integration, drafting of the individual steps as fast matrix operations and high accuracy due to the exponential convergence of the expansions. Application to the diatomic molecules O2 and CO exemplifies the developed methods, which can be relevant for a quantitative understanding of chemical bonds in general. 2012 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Heun’s Confluent Equation for the Solution of the Hydrogen Atom Problem in Spheroidal Coordinates

The Schrödinger equation in prolate spheroidal coordinates separates into ordinarydifferential equations in single coordinates; of these direct solutions, two contain confluent Heun functions. We derive polynomial solutions of Heun’s confluent equation and express Coulomb spheroidal functions in a closed algebraic form. Spheroidal orbitals are expressible as hybrids composed of spherical ones c...

متن کامل

Mathematical Techniques in Molecular Calculations Using Slater Orbitals

In this Review we show several mathematical techniques that can be used in molecular calculations using Slater orbitals, like the transformation of the Hamiltonian, derivatives of spherical harmonics with respect to the angles, and angular transformations. We treat several kinds of integrals in detail: the exchange, Coulomb and hybrid repulsion and exchange correlated integrals, and the three-c...

متن کامل

Coulomb energy of uniformly charged spheroidal shell systems.

We provide exact expressions for the electrostatic energy of uniformly charged prolate and oblate spheroidal shells. We find that uniformly charged prolate spheroids of eccentricity greater than 0.9 have lower Coulomb energy than a sphere of the same area. For the volume-constrained case, we find that a sphere has the highest Coulomb energy among all spheroidal shells. Further, we derive the ch...

متن کامل

Efficient multi-scale computation of products of orbitals in electronic structure calculations

The computation of two-electron integrals in electronic structure calculations is a major bottleneck in Hartree-Fock, density functional theory and post-Hartree-Fock methods. For large systems, one has to compute a huge number of two-electron integrals for these methods which leads to very high computational costs. The adaptive computation of products of orbitals in wavelet bases provides an im...

متن کامل

Tunable Plasmonic Nanoparticles Based on Prolate Spheroids

Metallic nanoparticles can exhibit very large optical extinction in the visible spectrum due to localized surface plasmon resonance. Spherical plasmonic nanoparticles have been the subject of numerous studies in recent years due to the fact that the scattering response of spheres can be analytically evaluated using Mie theory. However a major disadvantage of metallic spherical nanoparticles is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 231  شماره 

صفحات  -

تاریخ انتشار 2012